Volcano-like Behavior of Au-Pd Core-shell Nanoparticles in the Selective Oxidation of Alcohols
نویسندگان
چکیده
Gold-palladium (AuPd) nanoparticles have shown significantly enhanced activity relative to monometallic Au and Pd catalysts. Knowledge of composition and metal domain distributions is crucial to understanding activity and selectivity, but these parameters are difficult to ascertain in catalytic experiments that have primarily been devoted to equimolar nanoparticles. Here, we report AuPd nanoparticles of varying Au:Pd molar ratios that were prepared by a seed growth method. The selective oxidation of benzyl alcohol was used as a model reaction to study catalytic activity and selectivity changes that occurred after varying the composition of Pd in bimetallic catalysts. We observed a remarkable increase in catalytic conversion when using a 10:1 Au:Pd molar ratio. This composition corresponds to the amount of Pd necessary to cover the existing Au cores with a monolayer of Pd as a full-shell cluster. The key to increased catalytic activity derives from the balance between the number of active sites and the ease of product desorption. According to density functional theory calculations, both parameters are extremely sensitive to the Pd content resulting in the volcano-like activity observed.
منابع مشابه
Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کاملAu/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation
A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decrea...
متن کاملSrFeO3-δ Assisting with Pd Nanoparticles on the Performance of Alcohols Catalytic Oxidation
Current catalysts for the alcohol oxidation in fuel cells (typically noble metals-based) are susceptible to poisoning with intermediates like CO. Hence we decided to find superseded catalysts for methanol oxidation based on incorporation of mixed oxides. In this research, a nano-size perovskite SrFeO3-δ (SrFeO3<su...
متن کاملCore-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions
Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shell...
متن کاملUnusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
A theoretical and experimental study of the electrocatalytic oxidation of CO on PdxAu140-x@Pt dendrimer-encapsulated nanoparticle (DEN) catalysts is presented. These nanoparticles are comprised of a core having an average of 140 atoms and a Pt monolayer shell. The CO oxidation activity trend exhibits an unusual koppa shape as the number of Pd atoms in the core is varied from 0 to 140. Calculati...
متن کامل